
Information Extraction as Link Prediction: Using Curated
Citation Networks to Improve Gene Detection

Andrew Arnold and William W. Cohen
Machine Learning Department, Carnegie Mellon University
Andrew Arnold: aarnold@cs.cmu.edu; William W. Cohen: wcohen@cs.cmu.edu

Abstract
In this paper we explore the usefulness of various types of publication-related metadata, such as
citation networks and curated databases, for the task of identifying genes in academic biomedical
publications. Specifically, we examine whether knowing something about which genes an author
has previously written about, combined with information about previous coauthors and citations,
can help us predict which new genes the author is likely to write about in the future. Framed in
this way, the problem becomes one of predicting links between authors and genes in the
publication network. We show that this solely social-network based link prediction technique
outperforms various baselines, including those relying only on non-social biological information.

1 Introduction & Related Work
Social networks, in the form of bibliographies and citations, have long been an integral part
of the scientific process. Most scientists begin their exploration of a new problem with an
intense investigation of the relevant literature. In a new or small field, for which the universe
of such citations is relatively small, both a broad and deep search is manageable. As the size
of the set of related papers grows, however, a researcher’s time and attention can easily
become overwhelmed. While the Internet has provided scientists with new tools for
performing these literature reviews more quickly and precisely, it is usually left up to the
user to guide the search themselves. In other words, one has to know what she is looking for.
At the same time the space of accessible, and possibly relevant, papers has increased even
more swiftly, leaving many valuable publications undiscovered. This is the problem we
address in this paper: how to leverage the information contained within these publication
networks, along with information concerning the individual publications themselves and a
user’s history, to help predict which entities the user might be most interested in and thus
intelligently guide his search.

Specifically, our application domain is the task of predicting which genes and proteins a
biologist is likely to write about in the future (for the rest of the paper we will use the
term ’gene’ to refer both to the gene and gene product, or protein). We define a citation
network as a graph in which publications and authors are represented as nodes, with bi-
directional authorship edges linking authors and papers, and uni-directional citation edges
linking papers to other papers (the direction of the edge denoting which paper is doing the
citing and which is being cited). We can construct such a network from a given corpus of
publications along with their lists of cited works. There exist many so called curated
literature databases for biology in which publications are tagged, or manually labeled, with
the genes with which they are concerned. We can use this metadata to introduce gene nodes
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to our enhanced citation network, which are bi-directionally linked to the papers in which
they are tagged. Finally, we exploit a third source of data, namely biological domain
expertise in the form of ontologies and databases of facts concerning these genes, to create
association edges between genes which have been shown to relate to each other in various
ways. We call the entire structure an annotated citation network.

Although academics have long recognized and investigated the importance of such
networks, their investigations have often been focused on historical [1], summary, or
explanatory purposes [2–5]. While other work has been concerned with understanding how
influence develops and flows through these networks [6], we instead focus on the problem
of link prediction [7,8]. Link prediction is the problem of predicting which nodes in a graph,
currently unlinked, ”should” be linked to each other, where ”should” is defined in some
application-specific way. This may be useful to know if a graph is changing over time (as in
citation networks when new papers are published), or if certain edges may be hidden from
observation (as in detecting insider trading cabals). In our setting, we seek to discover edges
between authors and genes, indicating genes about which an author has yet to write, but
which he may be interested in.

While there has been extensive work on analyzing and exploiting the structure of networks
such as the web and citation networks [9,10], most of the techniques used for identifying and
extracting biological entities directly from publication text [11–16] and curated databases
[17] rely on performing named entity recognition on the text itself [18] and ignore the
underlying network structure entirely. While these techniques perform well given a paper to
analyze, they are impossible to use when such text is unavailable, as in our link prediction
task.

In the following sections, respectively, we discuss the topology of our annotated citation
network, along with describing the data sources from which the network was constructed.
We then introduce random walks, the technique used for calculating the proximity of nodes
in our graph, thus suggesting plausible novel links between authors and genes. Finally, we
describe an extensive set of ablation studies performed to assess the relative importance of
each type of edge, or relation, in our model and discuss the results, concluding with a view
towards a future model combining network and text information.

2 Data
We are lucky to have access to many sources of good data1 from which we are able to
extract the nodes and edges that make up our annotated citation network2:

• PubMed Central (PMC) contains full-text copies of over one million biological
papers for which open-access has been granted.

• The Saccharomyces Genome Database(SGD) contains various types of information
concerning the yeast organism Saccharomyces cerevisiae.

• The Gene Ontology (GO) describes the relationships between biological entities
across numerous organisms.

1http://pubmedcentral.nih.gov, http://yeastgenome.org, http://geneontology.org
2An on-line demo, including the network used for the experiments, can be found at http://yeast.ml.cmu.edu/nies/.
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Nodes

Name Number

Paper 44,012

Author 66,977

Gene 5,816

Edges

Name Description Number

Authorship Author ↔ Paper 178,233

Mention Paper ↔ Gene 160,621

Citation Paper ↔ Paper 42,958

RelatesTo Gene ↔ Gene 1,604

3 Methods
Now that we have a representation of the data as a graph, we are ready to begin the
calculation of our link predictions. The first step is to pick a node, or set of nodes, in the
graph to which our predicted links will connect. These are our query nodes. We then
perform a random walk out from the query node, simultaneously following each edge to the
adjacent nodes with a probability proportional to the inverse of the total number of adjacent
nodes [19]. We repeat this process a number of times, each time spreading our probability of
being on any particular node, given we began on the query node. If there are multiple nodes
in the query set, we perform our walk simultaneously from each one. After each step in our
walk we have a probability distribution over all the nodes of the graph, representing the
likelihood of a walker, beginning at the query node(s) and randomly following outbound
edges in the way described, of being on that particular node. Under the right conditions,
after enough steps this distribution will converge. We can then use this distribution to rank
all the nodes, predicting that the nodes most likely to appear in the walk are also the nodes to
which the query node(s) should most likely connect. In practice, the same results can be
achieved by multiplying the adjacency matrix of the graph by itself. Each such
multiplication represents one complete step in the walk.

We can adjust the adjacency matrix (and thus the graph) by selectively hiding, or removing,
certain types of edges. For instance, if we want to isolate the influence of citations on our
walk, we can remove all the citation edges from the graph, perform a walk, and compare the
results to a walk performed over the full graph.

Likewise, in order to evaluate our predicted edges, we can hide certain instances of edges,
perform a walk, and compare the predicted edges to the actual withheld ones. For example,
if we have all of an author’s publications and their associated gene mention data for the
years 2007 and 2008, we can remove the links between the author and the genes he
mentioned in 2008 (along with all other edges gleaned from 2008 data), perform a walk, and
then see how many of those withheld gene-mention edges were correctly predicted. Since
this evaluation is a comparison between one unranked set (the true edges) and another
ranked list (the predicted edges) we can use the standard information retrieval metrics of
precision, recall and F1.
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4 Experiment & Results
To evaluate our network model, we first divide our data into two sets:

• Train, which contains only authors, papers, genes and their respective relations
which were published before 2008

•
Validation, which contains new3 ( ) relationships that were
first published in 2008.

From this Train data we create a series of subgraphs, each emphasizing a different set of
relationships between the nodes. These subgraphs are summarized in Figure 1. By
selectively removing edges of a certain type from the FULL graph we were able to isolate
the effects of these relations on the random walk and, ultimately, the predicted links.
Specifically, we classify each graph into one of four groups and later use this categorization
to assess the relative contribution of each edge type to the overall link prediction
performance.

4.1 Baseline
The baseline graphs are UNIFORM, ALL_PAPERS and AUTHORS. UNIFORM and
ALL_PAPERS do not depend on the author node. UNIFORM, as its name implies, is simply
the chance of predicting a novel gene correctly given that you select a predicted gene
uniformly at random from the universe of genes. Since there are 5,816 gene names, and on
average each author in our query set writes about 6.7 new genes in 2008, the chance of
randomly guessing one of these correctly is 6.7/5816 = .12%. Using these values we can
extrapolate this model’s expected precision, recall and F1. Relatedly, ALL_PAPERS, while
also independent of authors, nevertheless takes into account the distribution of genes across
papers in the training graph. Thus its predictions are weighted by the number of times a gene
was written about in the past. This model provides a more reasonable baseline. AUTHORS
considers the distribution of genes over all papers previously published by the author. While
this type of model may help recover previously published genes, it may not do as well
identifying new genes.

4.2 Social
The social graphs (RELATED_PAPERS, RELATED_AUTHORS, COAUTHORS,
FULL_MINUS_RELATED_GENES and CITATIONS) are constructed of edges that convey
information about the social interactions of authors, papers and genes. These include facts
about which authors have written together, which papers have cited each other, and which
genes have been mentioned in which papers.

4.3 Content
In addition to social edges, some graphs also encode information regarding the biological
content of the genes being published. The graph RELATED_GENES models only this
biological content, while FULL_MINUS_COAUTHORS, FULL_MINUS_CITATIONS,
FULL and FULL(AUTHOR + 1_GENE) all contain edges representing both social and
biological content.

3We restrict our evaluation to genes about which the author has never previously published (even though an author may publish about
them again in 2008), since realistically, these predictions would be of no value to an author who is already familiar with his own
previous publications.
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4.4 Protocol
For our query nodes we select the subset of authors who have publications in both the
Train and Validation set. To make sure we have fresh, relevant publications for these
query authors, and to minimize the impact of possible ambiguous name collision, we further
restrict the query author list to only those authors who have publications in both 2007 and
2008. This yields a query list, All Authors, with a total of 2,322 authors, each to be queried
independently, one at a time. We further create two other query author lists, FirstAuthors
and LastAuthors containing 544 and 786 authors respectively, restricted to those authors
who appear as the first or last author, respectively, in their publications in the Validation
set. The purpose of these lists of queries is to determine whether an author’s position in a
paper’s list of authors has any impact in our ability to predict the genes he or she might be
interested in.

Given these sets of graphs and query lists, we then query each author in each of our three
lists, independently, against each subgraph in Figure 1. Each such (author, graph) query
yields a ranked list of genes predicted for that author given that network representation. By
comparing this list of predicted genes against the set of true genes from Validation we are
able to calculate the performance of each (author, graph) pairing. Since the list of predicted
genes is sometimes quite long (since it is a distribution over all genes in the walk), we set a
threshold and all evaluations are calculated only considering the top 20 predictions made.
These resulting precision, recall, F1 and MAP metrics, broken down for each set of author
positions, are summarized in Figure 2 respectively.

4.5 Querying with Extra Information
Finally, we were interested in seeing what effect adding some limited information about an
author’s 2008 publications to our query would have on the quality of our predictions. This
might occur, for instance, if we have the text of one of the author’s new papers available and
are able to perform basic information extraction to find at least one gene. The question is,
can we leverage this single, perhaps easy to identify gene, to improve our chances of
predicting or identifying other undiscovered new genes? To answer this question, in addition
to querying each author in isolation, we also queried, together as a set, each author and the
one new gene about which he published most in 2008 (see graph FULL(AUTHOR +
1_GENE) in Figure 1). These results are summarized, along with the others, in Figure 2,
again broken down by author position.

4.6 Results
Using Figures 1 and 2 as guides, we turn now to an analysis of the effects different edge
types have on our ability to successfully predict new genes4. We should first explain the
absence of results for the AUTHORS graph, and the lines for UNIFORM and ALL_PAPERS
in Figure 2. Since these baselines do not depend on the query, they are constant across
models and are thus displayed as horizontal lines across the charts in Figure 2. AUTHORS is
missing because it is only able to discover genes that have already been written about by the
query authors in the training graph. Since our evaluation metrics only count the prediction of
novel genes, AUTHORS’s performance is necessarily zero.

Given these baselines, let us next consider the role of author position on prediction
performance. It is apparent from the results that, in almost all settings, querying based on the
first author of a paper generates the best results, with querying by last author performing the
worst. This seems to suggest that knowing the first author of a paper is more informative

4A summery of the claims made and their associated statistical tests are summarized in Table 1.
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than knowing who the last author was in terms of predicting which genes that paper may be
concerned with. Depending on the specifics of one’s own discipline, this may be surprising.
For example, in computer science it is often customary for an advisor, lab director or
principal investigator to be listed as the last author. One might assume that the subject of
that lab’s study would be most highly correlated with this final position author, but the
evidence here seems to suggest otherwise. Tellingly, the only case in which the last author is
most significant is in the CITATIONS_CITED model. Recall that in this model edges from
cited papers to their citing papers are present. These results may suggest that in this model,
knowing the last author of the paper actually is more valuable.

Given that in most cases the models queried using first authors performed the best, the
columns of Figure 2 have been positioned in order of increasing first author F1 performance,
and all subsequent comparisons are made with respect to the first author queries, unless
otherwise stated. Thus we notice that those models relying solely on the biological GO
information relating genes to one another (Content graphs from Figure 1) perform
significantly worse than any other model, and are in fact in the same range as the UNIFORM
model. Indeed, the FULL model benefits from having the relations removed, as it is
outperformed by the FULL_MINUS_RELATED_GENES model.

There are a few possible explanations for why these content-based biological edges might be
hurting performance. First, scientists might not be driven to study genes which have already
been demonstrated to be biologically related to one another. Since we are necessarily using
biological facts already discovered, we may be behind the wave of new investigation.
Second, these new investigations, some of them biologically motivated, might not always
turn out conclusively or successfully. This would likewise lead to the genes being studied in
this way lying outside the scope of our biological content. Finally, it is possible that our
methods for parsing and interpreting the GO information and extracting the relationships
between genes may not be capturing the relevant information in the same way a trained
biologist might be able to. Relatedly, the ontologies themselves might be designed more for
summarizing the current state of knowledge, rather than suggesting promising areas of
pursuit.

In contrast, the models exploiting the social relationships in CITATIONS, COAUTHORS,
RELATED_AUTHORS and RELATED_PAPERS all outperform the ALL_PAPERS baseline.
While each of these social edge types is helpful on its own, their full combination is, perhaps
counter-intuitively, not the best performing model. Indeed, while FULL outperforms its
constituent CITATIONS and COAUTHORS models, it nevertheless benefits slightly from
having the coauthor edges removed (as in FULL_MINUS_COAUTHOR). This may be due
to competition among the edges for the probability being distributed by our random walk.
The more paths there are out of a node, the less likely the walker is to follow any given one.
Thus, by removing the (many) coauthorship edges from the FULL graph, we allow the walk
to reach a better solution more quickly.

Interestingly, the best performance of the single-author query models is achieved by the
relatively simple, pure collaborative filtering RELATED_PAPERS model [20]. Explained in
words, this social model predicts that authors are likely to write about genes that co-occur
with an author’s previously studied genes in other people’s papers. This makes sense since,
if other people are writing about the same genes as the author, they are more likely to share
other common interests and thus would be the closest examples of what the author may
eventually become interested in in the future.

Finally we examine the question of whether having not only a known author to query, but
also one of this author’s new genes, aids in prediction. The results for the FULL(AUTHOR +
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1_GENE) model5 seem to indicate that the answer is yes. Adding a single known new gene
to our author query of the FULL model improves our prediction performance by almost
50%, and significantly outperforms the best single-author query model,
RELATED_PAPERS, as well. This is a promising result, as it suggests that the information
contained in our network representation can be combined with other sources of data
(gleaned from performing information extraction on papers’ text, for example) to achieve
even better results than either method alone.

5 Conclusions & Future Work
In this paper we have introduced a new graph-based annotated citation network model to
represent various sources of information regarding publications in the biological domain.
We have shown that this network representation alone, without any features drawn from
text, is able to outperform competitive baselines. Using extensive ablation studies we have
investigated the relative impact of each of the different types of information encoded in the
network, showing that social knowledge often trumps biological content, and demonstrated a
powerful tool for both combining and isolating disparate sources of information. We have
further shown that, in the domain of Saccharomyces research from which our corpus was
drawn, knowing who the first author of a paper is tends to be more informative than
knowing who the last author is (contrary to some conventional wisdom). Finally, we have
shown that, despite performing well on its own, our network representation can easily be
further enhanced by including in the query set other sources of knowledge about a prediction
subject gleaned from separate techniques, such as information extraction and document
classification.

We plan to extend this work by incorporating the results of these social network models into
standard information extraction techniques. Since the end result of our link prediction
algorithm is a distribution over nodes, one simple way to do this would be to use that
distribution as a prior for a probabilistic information extraction methods. We also see value
in incorporating a temporal dimension to our network. In our current model all edges are
walked upon with equal probability, regardless of the temporal distance between the two
connected nodes. We might do better by taking this time distance into account: for example,
coauthorship on a paper 20 years ago may carry less weight than a collaboration just a few
years ago.
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Fig. 1.
Subgraphs queried in the experiment, grouped by type: B for baselines, S for social
networks, C for networks conveying biological content, and S+C for networks making use
of both social and biological information. Shaded nodes represent the node(s) used as a
query. **For graph RELATED_GENES, which contains the two complimentary uni-
directional Relation edges, we also performed experiments on the two subgraphs
RELATED_GENESRelatesTo and RELATED_GENESRelatedTo which each contain only one
direction of the relation edges. For graph CITATIONS, we similarly constructed subgraphs
CITATIONSCites and CITATIONSCited.
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Fig. 2.
Mean percent F1 @20 of queries across graph types, broken down by author position, shown
with error bars demarking the 95% confidence interval. Baselines UNIFORM and
ALL_PAPERS are also displayed.
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Table 1

A summary of the claims made and the statistical tests used to support those claims.

Claim Statistical test

Last author is most significant in CITATIONS_CITED 80% confidence intervals

Content graphs perform worse than any other model Wilcoxon signed rank (p < .01)

Content graphs are in the same range as UNIFORM Inside 95% confidence intervals

Removing RELATED_GENES improves FULL Wilcoxon signed rank (p < .01)

Social graphs outperform ALL_PAPERS Outside 95% confidence intervals

FULL outperforms CITATIONS and COAUTHORS Wilcoxon signed rank (p < .01)

FULL benefits from having coauthor edges removed Wilcoxon signed rank (p < .15)

RELATED_PAPERS is best single-author query model Wilcoxon signed rank (p < .10)

FULL(AUTHOR + 1 GENE) performs best Paired sign (p < .02)
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